Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Biomol Struct Dyn ; 42(2): 977-992, 2024.
Article in English | MEDLINE | ID: mdl-37051780

ABSTRACT

Spina Bifida (SB) and Wilm's Tumor (WT) are conditions, both associated with children. Several studies have shown that WT later develops in SB patients, which led us to elucidate common key genes and linked pathways of both conditions, aimed at their concurrent therapeutic management. For this, integrated bioinformatics analysis was employed. A comprehensive manual curation of genes identified 133 and 139 genes associated with SB and WT, respectively, which were used to construct a single protein-protein interaction (PPI) network. Topological parameters analysis of the network showed its scale-free and hierarchical nature. Centrality-based analysis of the network identified 116 hubs, of which, 6 were called the key genes attributed to being common between SB and WT besides being the hubs. Gene enrichment analysis of the 5 most essential modules, identified important biological processes and pathways possibly linking SB to WT. Additionally, miRNA-key gene-transcription factor (TF) regulatory network elucidated a few important miRNAs and TFs that regulate our key genes. In closing, we put forward TP53, DICER1, NCAM1, PAX3, PTCH1, MTHFR; hsa-mir-107, hsa-mir-137, hsa-mir-122, hsa-let-7d; and YY1, SOX4, MYC, STAT3; key genes, miRNAs and TFs, respectively, as the key regulators. Further, MD simulation studies of wild and Glu429Ala forms of MTHFR proteins showed that there is a slight change in MTHFR protein structure due to Glu429Ala polymorphism. We anticipate that the interplay of these three entities will be an interesting area of research to explore the regulatory mechanism of SB and WT and may serve as candidate target molecules to diagnose, monitor, and treat SB and WT, parallelly.Communicated by Ramaswamy H. Sarma.


Subject(s)
MicroRNAs , Wilms Tumor , Child , Humans , Gene Expression Profiling , MicroRNAs/genetics , Computational Biology , Gene Regulatory Networks , SOXC Transcription Factors/genetics , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics
2.
Bioinformation ; 19(9): 954-963, 2023.
Article in English | MEDLINE | ID: mdl-37928493

ABSTRACT

Lung cancer is the primary and third most frequently detected form of cancer in both males and females. The present study tries to perform integrated analysis in male as well as female patients inclusively both smoker and non-smokers. This study aims to identify diagnostic biomarkers and therapeutic targets for lung cancer patients using human microarray profile datasets. Differentially expressed genes (DEGs) were identified using a PPI network from the String database, and major modules or clusters were extracted using MCODE. The Cytohubba plug-in was used to find hub genes from the PPI network using centralities approaches. Twenty significant hub genes (CCND1, CDK1, CCNB1, CDH1, TP53, CTNNB1, EGFR, ESR1, CDK2, CCNA2, RHOA, EGF, FN1, HSP90AA1, STAT3, JUN, NOTCH1, IL6, SRC, and CD44) were identified as promising diagnostic biomarkers and therapeutic targets for lung cancer treatment. Survival analysis and hub gene validation were also conducted. GO enrichment and pathway analysis were conducted to identify their important functions. These hub genes were also used to identify targeted drugs. The findings suggest that the identified genes have the potential to be used as diagnostic biomarkers and therapeutic targets for lung cancer treatment.

3.
Biomedicines ; 11(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37238942

ABSTRACT

Breast cancer is one of the most prevalent types of cancer diagnosed globally and continues to have a significant impact on the global number of cancer deaths. Despite all efforts of epidemiological and experimental research, therapeutic concepts in cancer are still unsatisfactory. Gene expression datasets are widely used to discover the new biomarkers and molecular therapeutic targets in diseases. In the present study, we analyzed four datasets using R packages with accession number GSE29044, GSE42568, GSE89116, and GSE109169 retrieved from NCBI-GEO and differential expressed genes (DEGs) were identified. Protein-protein interaction (PPI) network was constructed to screen the key genes. Subsequently, the GO function and KEGG pathways were analyzed to determine the biological function of key genes. Expression profile of key genes was validated in MCF-7 and MDA-MB-231 human breast cancer cell lines using qRT-PCR. Overall expression level and stage wise expression pattern of key genes was determined by GEPIA. The bc-GenExMiner was used to compare expression level of genes among groups of patients with respect to age factor. OncoLnc was used to analyze the effect of expression levels of LAMA2, TIMP4, and TMTC1 on the survival of breast cancer patients. We identified nine key genes, of which COL11A1, MMP11, and COL10A1 were found up-regulated and PCOLCE2, LAMA2, TMTC1, ADAMTS5, TIMP4, and RSPO3 were found down-regulated. Similar expression pattern of seven among nine genes (except ADAMTS5 and RSPO3) was observed in MCF-7 and MDA-MB-231 cells. Further, we found that LAMA2, TMTC1, and TIMP4 were significantly expressed among different age groups of patients. LAMA2 and TIMP4 were found significantly associated and TMTC1 was found less correlated with breast cancer occurrence. We found that the expression level of LAMA2, TIMP4, and TMTC1 was abnormal in all TCGA tumors and significantly associated with poor survival.

4.
J Biomol Struct Dyn ; 41(23): 13857-13872, 2023.
Article in English | MEDLINE | ID: mdl-37070201

ABSTRACT

Leprosy is a chronic infectious disease caused by a bacillus, Mycobacterium leprae. According to official data from 139 countries in the 6 WHO Regions, there were 127558 new leprosy cases worldwide in 2020. Leprosy mainly affects the skin, the peripheral nerves, mucosa of the upper respiratory tract, and the eyes. If this disease is left untreated, can harm the skin, nerves, limbs, eyes, and skin permanently. The disease is curable with multidrug therapy. Over a period of time Mycobacterium leprae has become resistant to these drugs. Therefore, new therapeutic molecules are warranted. This study was aimed to carry out the in-silico analysis to determine the inhibitory effect of natural compounds on Dihydropteroate synthase (DHPS) of Mycobacterium leprae. The DHPS is a key enzyme in the folate biosynthesis pathway in M. leprae and acts as a competitive inhibitor of PABA. The 3D structure of DHPS protein was modeled using homology modeling and was validated. Molecular docking and simulation along with other in-silico methods were employed to determine the inhibitory effect of ligand molecules towards DHPS target protein. Results revealed ZINC03830554 molecule as a potential inhibitor of DHPS. Binding experiments and bioassays utilizing this strong inhibitor molecule against purified DHPS protein are necessary to validate these early findings.Communicated by Ramaswamy H. Sarma.


Subject(s)
Leprosy , Mycobacterium leprae , Humans , Leprostatic Agents/pharmacology , Dapsone/pharmacology , Dihydropteroate Synthase/chemistry , Dihydropteroate Synthase/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Drug Therapy, Combination , Leprosy/drug therapy
5.
Brief Funct Genomics ; 22(3): 250-262, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36790356

ABSTRACT

Primary hyperparathyroidism is caused by solitary parathyroid adenomas (PTAs) in most cases (⁓85%), and it has been previously reported that PTAs are associated with cardiovascular disease (CVD) and type-2 diabetes (T2D). To understand the molecular basis of PTAs, we have investigated the genetic association amongst PTAs, CVD and T2D through an integrative network-based approach and observed a remarkable resemblance. The current study proposed to compare the PTAs-associated proteins with the overlapping proteins of CVD and T2D to determine the disease relationship. We constructed the protein-protein interaction network by integrating curated and experimentally validated interactions in humans. We found the $11$ highly clustered modules in the network, which contain a total of $13$ hub proteins (TP53, ESR1, EGFR, POTEF, MEN1, FLNA, CDKN2B, ACTB, CTNNB1, CAV1, MAPK1, G6PD and CCND1) that commonly co-exist in PTAs, CDV and T2D and reached to network's hierarchically modular organization. Additionally, we implemented a gene-set over-representation analysis over biological processes and pathways that helped to identify disease-associated pathways and prioritize target disease proteins. Moreover, we identified the respective drugs of these hub proteins. We built a bipartite network that helps decipher the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drug combinations or drug-repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs and give a synergistic effect with better outcomes. This network-based analysis opens a new horizon for more personalized treatment and drug-repurposing opportunities to investigate new targets and multi-drug treatment and may be helpful in further analysis of the mechanisms underlying PTA and associated diseases.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Parathyroid Neoplasms , Humans , Parathyroid Neoplasms/genetics , Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Protein Interaction Maps/genetics
6.
J Biomol Struct Dyn ; 41(20): 11231-11246, 2023 12.
Article in English | MEDLINE | ID: mdl-36661253

ABSTRACT

Leprosy is one of the chronic diseases with which humanity has struggled globally for millennia. The potent anti-leprosy medications rifampicin, clofazimine and dapsone, among others, are used to treat leprosy. Nevertheless, even in regions of the world where these drugs have been successfully implemented, resistance continues to be observed. Due to the problems with the current treatments, this disease should be fought at every level of society with new drugs. The purpose of this research was to identify natural candidates with the ability to inhibit MabA (gene-fabG1) with fewer negative effects. The work was accomplished through molecular docking, followed by a dynamic investigation of protein-ligand, which play a significant role in the design of pharmaceuticals. After modelling the protein structure with MODELLER 9.21v, AutoDock Vina was used to perform molecular docking with 13 3 D anti-leprosy medicines and a zinc library to determine the optimal protein-ligand interaction. In addition, the docking result was filtered based on binding energy, ADMET characteristics, PASS analysis and the most crucial binding residues. The ZINC08101051 chemical compound was prioritized for further study. Using an all-atom 100 ns MD simulation, the binding pattern and conformational changes in protein upon ligand binding were studied. Recommendation for subsequent validation based on deviation, fluctuation, gyration and hydrogen bond analysis, followed by main component and free energy landscape.Communicated by Ramaswamy H. Sarma.


Subject(s)
Leprosy , Mycobacterium leprae , Humans , Molecular Docking Simulation , Ligands , Protein Binding , Leprosy/drug therapy , Leprosy/microbiology , Molecular Dynamics Simulation
7.
Biotechnol Genet Eng Rev ; : 1-15, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36597258

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family. It plays a significant role in the regulation of brain metabolic activity, modification of synaptic efficacy, and enhances neuronal survival. A common naturally occurring allelic variation, i.e. G196A (Val66 Met, rs6265) of the BDNF gene is implicated in neuroplasticity. This study analyzes its expression levels and determines the frequency of BDNF G196A gene polymorphism in women with Turner syndrome (TS) compared to the controls. This case-control study comprised 14 TS patients and 8 healthy individuals. The expression levels of BDNF gene in TS patients were checked by qPCR. For BDNF gene, a dynamic expression range along with the presence of G196A polymorphism was found across all TS patients. The effects of Val66 Met mutation on BDNF protein structure and function were studied by molecular dynamics simulations of wild and mutant (Val66 Met) forms. The analysis of different trajectories generated by simulation showed that there was a significant change in the protein structure due to Val66 Met polymorphism, which might lead to functional impairment. This is first time we are reporting the association of BDNF G196A gene polymorphism with TS risk. Our study suggests that in turner patients, BDNF G196A polymorphism may be an important genetic factor predisposing to neuroplasticity risk and can be exploited as diagnostic/prognostic marker for TS. Further study on a large number of TS samples will prove this point beyond doubts or otherwise enriching the much desired repertoire of personalized medicine.

8.
Biotechnol Genet Eng Rev ; : 1-20, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36696368

ABSTRACT

Leprosy is a major health concern and continues to be a source of fear and stigma among people worldwide. Despite remarkable achievements in the treatment, understanding of pathogenesis and transmission, epidemiology of leprosy still remains inadequate. The prolonged incubation period, slow rates of occurrence in those exposed and deceptive clinical presentation pose challenges to develop reliable strategies to stop transmission. Hence, there is a need for improved diagnostics and therapies to prevent mortality caused by leprosy. The objectives of this study are to identify significant genes from protein-protein interactions (PPIs) network of leprosy and to choose the most effective therapeutic targets. Fifty genes related with leprosy were discovered by literature mining. These genes were used to construct a primary network. Leading Eigen Vector method was used to break down the primary network into various sub-networks or communities. It was found that the primary network was divided into many sub-networks at the 6 levels. Seed genes were traced at each level till key regulatory genes were identified. Three seed genes, namely, GNAI3, NOTCH1, and HIF1A, were able to make their way till the final motif stage. These genes along with their interacting partners were considered key regulators of the leprosy network. This study provides leprosy-associated key genes which can lead to improved diagnosis and therapies for leprosy patients.

9.
Front Neurosci ; 16: 966877, 2022.
Article in English | MEDLINE | ID: mdl-35958988

ABSTRACT

Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.

10.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36014345

ABSTRACT

An ancient saffron-based polyherbal formulation, Dawa-ul-Kurkum (DuK), has been used to treat liver ailments and other diseases and was recently evaluated for its anticancer potential against hepatocellular carcinoma (HCC) by our research team. To gain further insight into the lead molecule of DuK, we selected ten active constituents belonging to its seven herbal constituents (crocin, crocetin, safranal, jatamansone, isovaleric acid, cinnamaldehyde, coumaric acid, citral, guggulsterone and dehydrocostus lactone). We docked them with 32 prominent proteins that play important roles in the development, progression and suppression of HCC and those involved in endoplasmic reticulum (ER) stress to identify the binding interactions between them. Three reference drugs for HCC (sorafenib, regorafenib, and nivolumab) were also examined for comparison. The in silico studies revealed that, out of the ten compounds, three of them-viz., Z-guggulsterone, dehydrocostus lactone and crocin-showed good binding efficiency with the HCC and ER stress proteins. Comparison of binding affinity with standard drugs was followed by preliminary in vitro screening of these selected compounds in human liver cancer cell lines. The results provided the basis for selecting Z-guggulsterone as the best-acting phytoconstituent amongst the 10 studied. Further validation of the binding efficiency of Z-guggulsterone was undertaking using molecular dynamics (MD) simulation studies. The effects of Z-guggulsterone on clone formation and cell cycle progression were also assessed. The anti-oxidant potential of Z-guggulsterone was analyzed through DPPH and FRAP assays. qRTPCR was utilized to check the results at the in vitro level. These results indicate that Z-guggulsterone should be considered as the main constituent of DuK instead of the crocin in saffron, as previously hypothesized.


Subject(s)
Carcinoma, Hepatocellular , Crocus , Liver Neoplasms , Pregnenediones , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/pathology , Pregnenediones/pharmacology
11.
Front Genet ; 13: 891055, 2022.
Article in English | MEDLINE | ID: mdl-36035163

ABSTRACT

Chronic kidney disease (CKD) is defined as a persistent abnormality in the structure and function of kidneys and leads to high morbidity and mortality in individuals across the world. Globally, approximately 8%-16% of the population is affected by CKD. Proper screening, staging, diagnosis, and the appropriate management of CKD by primary care clinicians are essential in preventing the adverse outcomes associated with CKD worldwide. In light of this, the identification of biomarkers for the appropriate management of CKD is urgently required. Growing evidence has suggested the role of mRNAs and microRNAs in CKD, however, the gene expression profile of CKD is presently uncertain. The present study aimed to identify diagnostic biomarkers and therapeutic targets for patients with CKD. The human microarray profile datasets, consisting of normal samples and treated samples were analyzed thoroughly to unveil the differentially expressed genes (DEGs). After selection, the interrelationship among DEGs was carried out to identify the overlapping DEGs, which were visualized using the Cytoscape program. Furthermore, the PPI network was constructed from the String database using the selected DEGs. Then, from the PPI network, significant modules and sub-networks were extracted by applying the different centralities methods (closeness, betweenness, stress, etc.) using MCODE, Cytohubba, and Centiserver. After sub-network analysis we identified six overlapped hub genes (RPS5, RPL37A, RPLP0, CXCL8, HLA-A, and ANXA1). Additionally, the enrichment analysis was undertaken on hub genes to determine their significant functions. Furthermore, these six genes were used to find their associated miRNAs and targeted drugs. Finally, two genes CXCL8 and HLA-A were common for Ribavirin drug (the gene-drug interaction), after docking studies HLA-A was selected for further investigation. To conclude our findings, we can say that the identified hub genes and their related miRNAs can serve as potential diagnostic biomarkers and therapeutic targets for CKD treatment strategies.

12.
Genes (Basel) ; 13(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35205254

ABSTRACT

Sepsis is a clinical syndrome with high mortality and morbidity rates. In sepsis, the abrupt release of cytokines by the innate immune system may cause multiorgan failure, leading to septic shock and associated complications. In the presence of a number of systemic disorders, such as sepsis, infections, diabetes, and systemic lupus erythematosus (SLE), cardiorenal syndrome (CRS) type 5 is defined by concomitant cardiac and renal dysfunctions Thus, our study suggests that certain mRNAs and unexplored pathways may pave a way to unravel critical therapeutic targets in three debilitating and interrelated illnesses, namely, sepsis, SLE, and CRS. Sepsis, SLE, and CRS are closely interrelated complex diseases likely sharing an overlapping pathogenesis caused by erroneous gene network activities. We sought to identify the shared gene networks and the key genes for sepsis, SLE, and CRS by completing an integrative analysis. Initially, 868 DEGs were identified in 16 GSE datasets. Based on degree centrality, 27 hub genes were revealed. The gProfiler webtool was used to perform functional annotations and enriched molecular pathway analyses. Finally, core hub genes (EGR1, MMP9, and CD44) were validated using RT-PCR analysis. Our comprehensive multiplex network approach to hub gene discovery is effective, as evidenced by the findings. This work provides a novel research path for a new research direction in multi-omics biological data analysis.


Subject(s)
Lupus Erythematosus, Systemic , Sepsis , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Humans , Lupus Erythematosus, Systemic/genetics , Sepsis/genetics
13.
Sci Rep ; 12(1): 1236, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075176

ABSTRACT

Sarcoidosis is a multi-organ disorder where immunology, genetic and environmental factors play a key role in causing Sarcoidosis, but its molecular mechanism remains unclear. Identification of its genetics profiling that regulates the Sarcoidosis network will be one of the main challenges to understand its aetiology. We have identified differentially expressed genes (DEGs) by analyzing the gene expression profiling of Sarcoidosis and compared it with healthy control. Gene set enrichment analysis showed that these DEGs were mainly enriched in the inflammatory response, immune system, and pathways in cancer. Sarcoidosis protein interaction network was constructed by a total of 877 DEGs (up-down) and calculated its network topological properties, which follow hierarchical scale-free fractal nature up to six levels of the organization. We identified a large number of leading hubs that contain six key regulators (KRs) including ICOS, CTLA4, FLT3LG, CD33, GPR29 and ITGA4 are deeply rooted in the network from top to bottom, considering a backbone of the network. We identified the transcriptional factors (TFs) which are closely interacted with KRs. These genes and their TFs regulating the Sarcoidosis network are expected to be the main target for the therapeutic approaches and potential biomarkers. However, experimental validations of KRs needed to confirm their efficacy.


Subject(s)
Sarcoidosis/genetics , Case-Control Studies , Gene Expression Profiling , Gene Regulatory Networks , Humans , Protein Interaction Maps , Sarcoidosis/metabolism
14.
J Biomol Struct Dyn ; 40(23): 12848-12862, 2022.
Article in English | MEDLINE | ID: mdl-34569411

ABSTRACT

The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is a global health emergency warranting development and implementation of targeted treatment. The enzyme main protease (Mpro; also known as 3C-like protease) is emerging as an attractive drug target. This enzyme plays an indispensable role in processing the translated polyproteins of viral RNA. Inhibiting the activity of Mpro would wedge viral replication. To facilitate the discovery of targeted therapy for COVID-19, we carried out the structure-assisted repurposing of existing protease inhibiting small molecules to target SARS-CoV-2 Mpro. Based on the structure of SARS-CoV-2 Mpro, here we report the small drug molecule namely saquinavir as its potent inhibitor. Findings support the premise that this promising antiviral protease inhibiting small drug molecule can be validated and implemented for the treatment and clinical management of COVID-19 pandemic disease.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19 , Drug Repositioning , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors
15.
Bioinformation ; 17(1): 86-100, 2021.
Article in English | MEDLINE | ID: mdl-34393423

ABSTRACT

Cardio-renal syndrome (CRS) is a rapidly recognized clinical entity which refers to the inextricably connection between heart and renal impairment, whereby abnormality to one organ directly promotes deterioration of the other one. Biological markers help to gain insight into the pathological processes for early diagnosis with higher accuracy of CRS using known clinical findings. Therefore, it is of interest to identify target genes in associated pathways implicated linked to CRS. Hence, 119 CRS genes were extracted from the literature to construct the PPIN network. We used the MCODE tool to generate modules from network so as to select the top 10 modules from 23 available modules. The modules were further analyzed to identify 12 essential genes in the network. These biomarkers are potential emerging tools for understanding the pathophysiologic mechanisms for the early diagnosis of CRS. Ontological analysis shows that they are rich in MF protease binding and endo-peptidase inhibitor activity. Thus, this data help increase our knowledge on CRS to improve clinical management of the disease.

16.
Bioinform Biol Insights ; 15: 11779322211027396, 2021.
Article in English | MEDLINE | ID: mdl-34276211

ABSTRACT

Cardiorenal syndromes constellate primary dysfunction of either heart or kidney whereby one organ dysfunction leads to the dysfunction of another. The role of several microRNAs (miRNAs) has been implicated in number of diseases, including hypertension, heart failure, and kidney diseases. Wide range of miRNAs has been identified as ideal candidate biomarkers due to their stable expression. Current study was aimed to identify crucial miRNAs and their target genes associated with cardiorenal syndrome and to explore their interaction analysis. Three differentially expressed microRNAs (DEMs), namely, hsa-miR-4476, hsa-miR-345-3p, and hsa-miR-371a-5p, were obtained from GSE89699 and GSE87885 microRNA data sets, using R/GEO2R tools. Furthermore, literature mining resulted in the retrieval of 15 miRNAs from scientific research and review articles. The miRNAs-gene networks were constructed using miRNet (a Web platform of miRNA-centric network visual analytics). CytoHubba (Cytoscape plugin) was adopted to identify the modules and the top-ranked nodes in the network based on Degree centrality, Closeness centrality, Betweenness centrality, and Stress centrality. The overlapped miRNAs were further used in pathway enrichment analysis. We found that hsa-miR-21-5p was common in 8 pathways out of the top 10. Based on the degree, 5 miRNAs, namely, hsa-mir-122-5p, hsa-mir-222-3p, hsa-mir-21-5p, hsa-mir-146a-5p, and hsa-mir-29b-3p, are considered as key influencing nodes in a network. We suggest that the identified miRNAs and their target genes may have pathological relevance in cardiorenal syndrome (CRS) and may emerge as potential diagnostic biomarkers.

17.
Sci Rep ; 11(1): 10662, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021221

ABSTRACT

The information on the genotype-phenotype relationship in Turner Syndrome (TS) is inadequate because very few specific candidate genes are linked to its clinical features. We used the microarray data of TS to identify the key regulatory genes implicated with TS through a network approach. The causative factors of two common co-morbidities, Type 2 Diabetes Mellitus (T2DM) and Recurrent Miscarriages (RM), in the Turner population, are expected to be different from that of the general population. Through microarray analysis, we identified nine signature genes of T2DM and three signature genes of RM in TS. The power-law distribution analysis showed that the TS network carries scale-free hierarchical fractal attributes. Through local-community-paradigm (LCP) estimation we find that a strong LCP is also maintained which means that networks are dynamic and heterogeneous. We identified nine key regulators which serve as the backbone of the TS network. Furthermore, we recognized eight interologs functional in seven different organisms from lower to higher levels. Overall, these results offer few key regulators and essential genes that we envisage have potential as therapeutic targets for the TS in the future and the animal models studied here may prove useful in the validation of such targets.


Subject(s)
Abortion, Habitual/etiology , Diabetes Mellitus, Type 2/etiology , Gene Regulatory Networks , Genes, Regulator , Genetic Predisposition to Disease , Turner Syndrome/complications , Turner Syndrome/genetics , Abortion, Habitual/metabolism , Biomarkers , Computational Biology/methods , Diabetes Mellitus, Type 2/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Protein Interaction Mapping , Protein Interaction Maps
18.
Front Genet ; 12: 597983, 2021.
Article in English | MEDLINE | ID: mdl-33889172

ABSTRACT

Spina Bifida (SB) is a congenital spinal cord malformation. Efforts to discern the key regulators (KRs) of the SB protein-protein interaction (PPI) network are requisite for developing its successful interventions. The architecture of the SB network, constructed from 117 manually curated genes was found to self-organize into a scale-free fractal state having a weak hierarchical organization. We identified three modules/motifs consisting of ten KRs, namely, TNIP1, TNF, TRAF1, TNRC6B, KMT2C, KMT2D, NCOA3, TRDMT1, DICER1, and HDAC1. These KRs serve as the backbone of the network, they propagate signals through the different hierarchical levels of the network to conserve the network's stability while maintaining low popularity in the network. We also observed that the SB network exhibits a rich-club organization, the formation of which is attributed to our key regulators also except for TNIP1 and TRDMT1. The KRs that were found to ally with each other and emerge in the same motif, open up a new dimension of research of studying these KRs together. Owing to the multiple etiology and mechanisms of SB, a combination of several biomarkers is expected to have higher diagnostic accuracy for SB as compared to using a single biomarker. So, if all the KRs present in a single module/motif are targetted together, they can serve as biomarkers for the diagnosis of SB. Our study puts forward some novel SB-related genes that need further experimental validation to be considered as reliable future biomarkers and therapeutic targets.

19.
Front Pharmacol ; 12: 770762, 2021.
Article in English | MEDLINE | ID: mdl-35153741

ABSTRACT

Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson's disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.

20.
Front Cardiovasc Med ; 8: 755321, 2021.
Article in English | MEDLINE | ID: mdl-35071341

ABSTRACT

In fact, the risk of dying from CVD is significant when compared to the risk of developing end-stage renal disease (ESRD). Moreover, patients with severe CKD are often excluded from randomized controlled trials, making evidence-based therapy of comorbidities like CVD complicated. Thus, the goal of this study was to use an integrated bioinformatics approach to not only uncover Differentially Expressed Genes (DEGs), their associated functions, and pathways but also give a glimpse of how these two conditions are related at the molecular level. We started with GEO2R/R program (version 3.6.3, 64 bit) to get DEGs by comparing gene expression microarray data from CVD and CKD. Thereafter, the online STRING version 11.1 program was used to look for any correlations between all these common and/or overlapping DEGs, and the results were visualized using Cytoscape (version 3.8.0). Further, we used MCODE, a cytoscape plugin, and identified a total of 15 modules/clusters of the primary network. Interestingly, 10 of these modules contained our genes of interest (key genes). Out of these 10 modules that consist of 19 key genes (11 downregulated and 8 up-regulated), Module 1 (RPL13, RPLP0, RPS24, and RPS2) and module 5 (MYC, COX7B, and SOCS3) had the highest number of these genes. Then we used ClueGO to add a layer of GO terms with pathways to get a functionally ordered network. Finally, to identify the most influential nodes, we employed a novel technique called Integrated Value of Influence (IVI) by combining the network's most critical topological attributes. This method suggests that the nodes with many connections (calculated by hubness score) and high spreading potential (the spreader nodes are intended to have the most impact on the information flow in the network) are the most influential or essential nodes in a network. Thus, based on IVI values, hubness score, and spreading score, top 20 nodes were extracted, in which RPS27A non-seed gene and RPS2, a seed gene, came out to be the important node in the network.

SELECTION OF CITATIONS
SEARCH DETAIL
...